Fractions and Division

Write a division expression for each fraction.

1.
$$\frac{2}{9}$$

2.
$$\frac{1}{7}$$

1.
$$\frac{2}{9}$$
 _____ **2.** $\frac{1}{7}$ _____ **3.** $\frac{7}{10}$ _____

4.
$$\frac{3}{4}$$

4.
$$\frac{3}{4}$$
 ______ **6.** $\frac{3}{16}$ ______

6.
$$\frac{3}{16}$$

7.
$$\frac{6}{13}$$

3.
$$\frac{18}{23}$$

7.
$$\frac{6}{13}$$
 ______ **9.** $\frac{11}{12}$ ______

Write each division expression as a fraction.

- **19.** Which term is any number that can be shown as the quotient of two integers?
 - A Rational number
 - **B** Prime number
 - C Decimal number
 - **D** Compatible number
- 20. Steve wanted to equally divide two sticks of butter among three bowls. Which fraction represents the amount of butter in each bowl?
 - $A \frac{5}{2}$
 - **B** $\frac{2}{3}$
 - $C_{\frac{3}{2}}$
 - $D_{\frac{3}{6}}$
- **21.** Can the division expression $4 \div 15$ be shown as a fraction? If yes, write the fraction. Explain why or why not.