Estimating Sums and Differences of Fractions

In **1** through **8**, tell if each fraction is closest to $0, \frac{1}{2}$, or 1. You may use a number line to help.

1.
$$\frac{1}{9}$$

2.
$$\frac{5}{9}$$

3.
$$\frac{11}{20}$$

1.
$$\frac{1}{9}$$
 _____ **2.** $\frac{5}{9}$ _____ **4.** $\frac{6}{10}$ _____

5.
$$\frac{6}{7}$$

6.
$$\frac{5}{12}$$

7.
$$\frac{3}{4}$$

5.
$$\frac{6}{7}$$
 6. $\frac{5}{12}$ **7.** $\frac{3}{4}$ **8.** $\frac{12}{15}$ **...**

In 9 through 16, estimate each sum or difference by replacing each fraction with $0, \frac{1}{2}$, or 1.

9.
$$\frac{7}{12} + \frac{4}{5}$$

9.
$$\frac{7}{12} + \frac{4}{5}$$
 10. $\frac{1}{12} + \frac{2}{4}$ **11.** $\frac{4}{9} - \frac{1}{6}$

11.
$$\frac{4}{9} - \frac{1}{6}$$

12.
$$\frac{2}{6} + \frac{8}{9}$$

13.
$$\frac{1}{6} - \frac{1}{8}$$

14.
$$\frac{2}{5} - \frac{3}{7}$$

15.
$$\frac{7}{8} - \frac{7}{9}$$

13.
$$\frac{1}{6} - \frac{1}{8}$$
 14. $\frac{2}{5} - \frac{3}{7}$ **15.** $\frac{7}{8} - \frac{7}{9}$ **16.** $\frac{5}{12} + \frac{2}{5}$

17. Which is the best estimate for the difference of $\frac{9}{16} - \frac{4}{9}$?

A
$$1-1=0$$

C
$$1 - \frac{1}{2} = \frac{1}{2}$$

A
$$1-1=0$$
 C $1-\frac{1}{2}=\frac{1}{2}$ **B** $\frac{1}{2}-\frac{1}{2}=0$ **D** $0-0=0$

D
$$0-0=0$$

18. Which fraction can NOT be replaced with
$$\frac{1}{2}$$
 when estimating?

A
$$\frac{10}{12}$$

$$c_{\frac{4}{10}}$$

B
$$\frac{2}{6}$$

D
$$\frac{13}{24}$$

19. Mia estimated $\frac{5}{8} + \frac{1}{9}$ by replacing $\frac{5}{8}$ with 1 and $\frac{1}{9}$ with 0. Her estimated sum was 1 + 0 = 1. Explain why Mia's estimate is NOT accurate.