Finding Common Denominators

In **1** through **8**, find a common denominator for each pair of fractions.

 1. $\frac{2}{5}$ and $\frac{3}{4}$ 2. $\frac{5}{8}$ and $\frac{4}{9}$ 3. $\frac{1}{4}$ and $\frac{4}{7}$ 4. $\frac{5}{12}$ and $\frac{7}{9}$

 5. $\frac{7}{15}$ and $\frac{1}{3}$ 6. $\frac{1}{2}$ and $\frac{2}{3}$ 7. $\frac{2}{9}$ and $\frac{4}{5}$ 8. $\frac{7}{8}$ and $\frac{5}{6}$

In **9** through **16**, find a common denominator for each pair of fractions. Then rename each fraction in the pair.

9. $\frac{3}{12}$ and $\frac{3}{8}$ **10.** $\frac{1}{8}$ and $\frac{2}{7}$ **11.** $\frac{1}{2}$ and $\frac{2}{9}$ **12.** $\frac{1}{3}$ and $\frac{1}{5}$

13. $\frac{7}{9}$ and $\frac{1}{6}$ **14.** $\frac{1}{6}$ and $\frac{3}{4}$ **15.** $\frac{7}{8}$ and $\frac{2}{3}$ **16.** $\frac{3}{8}$ and $\frac{5}{6}$

- 17. Train A arrives at Central Station on the hour and every 12 minutes. Train B arrives on the hour and every 15 minutes. When do both trains arrive at the same time?
 - A On the hour and 30 minutes past the hour
 - **B** On the hour and 15 minutes to the hour
 - **C** On the hour and 27 minutes past the hour
 - **D** On the hour only

- **18.** And rew wants to rename $\frac{2}{7}$ and $\frac{3}{4}$ using a common denominator. Which of the following shows these fractions renamed correctly?
 - **A** $\frac{8}{28}$ and $\frac{21}{28}$ **B** $\frac{2}{28}$ and $\frac{3}{28}$ **C** $\frac{4}{28}$ and $\frac{6}{28}$ **D** $\frac{2}{7}$ and $\frac{3}{7}$
- **19.** Manuel says that you can use one of the denominators of $\frac{5}{6}$ and $\frac{11}{30}$ when renaming these fractions using a common denominator. Why is this true?